A Guidelines-Based Approach to Peripheral Arterial Disease

ARTURO GARCIA TOUCHARD Hospital Universitario Puerta de Hierro Majadahonda

No disclosures related to presentation

Clinical Presentation The Spectrum of Manifestations of PAD

- Asymptomatic
- Atypical symptoms
- Intermittent claudication
- Critical limb ischemia
 - Rest Pain
 - Ulceration
 - Necrosis/Gangrene
- Acute limb ischemia

PAD Case #1

- A 74 year old female presents to initiate primary care without complaints
- She has a history of smoking for 40 years, HTN and "borderline" DM
- Medications include clonidine
- Exam reveals BP of 140/86 with non-palpable distal pulses but otherwise no vascular findings
- Labs with LDL of 138 mg/dl and HgA1C of 8.4

Why do we care about her diagnosis of PAD?

Prevalence of PAD in the US

CHD = coronary heart disease. PAD = peripheral arterial disease.

* Includes myocardial infarction and angina pectoris. American Heart Association. *Heart Disease and Stroke Statistics*—2005 Update. 2005.

Prevalence of PAD Increases With Age

Adapted from Golomb BA, et al. In: Creager MA, ed. *Management of Peripheral Arterial Disease: Medical, Surgical and Interventional Aspects*; 2000:1-18. Meijer WT, et al. *Arterioscler Thromb Vasc Biol*. 1998;18:185-192. Criqui MH, et al. *Circulation*. 1985;71:510-515.

Independent Risk Factors for PAD*

Relative Risk vs the General Population

Newman AB, et al. Circulation. 1993;88:837-845

PAD Risk Factors are Synergistic

Adapted from TASC Working Group. *J Vasc Surg*. 2000;31(1 suppl):S1-S296. Kannel WB et al. *J Am Geriatr Soc.* 1985;33:13-18.

Prevalence of PAD in At-Risk Patients

- The PARTNERS* program evaluated 6,979 patients in physicians' offices.
- Patient criteria:
 - ≥ 70 years, or
 - 50–69 years with a history of smoking and/or diabetes

29% 29% of patients were diagnosed with PAD

* PARTNERS=PAD Awareness, Risk, and Treatment: New Resources for Survival. Hirsch AT, et al. *JAMA.* 2001;286:1317-1324.

Typical vs Atypical Symptoms in Patients With Symptomatic PAD

Typical Symptoms¹

Intermittent claudication

- Exertional calf pain that
 - causes the patient to stop walking
 - resolves within 10 minutes of rest

Other nonspecific leg symptoms that may be indicative of PAD

Atypical Symptoms¹

- Exertional leg pain that
 - may involve areas other than the calves
 - may not stop the patient from walking
 - may not resolve within
 10 minutes of rest

33%² >50%²

1. McDermott MM et al. *JAMA*. 2001;286:1599-1606. 2. Hiatt WR. *N Engl J Med*. 2001;344:1608-1621.

Natural History Intermittent Claudication

Impact of PAD on Mortality

*Kaplan-Meier survival curves based on mortality from all causes. *Large-vessel PAD.

Adapted from Criqui MH et al. N Engl J Med. 1992;326:381-386.

Cardiovascular Events with PAD

1. Kannel WB. *J Cardiovasc Risk*. 1994;1:333-339. 2. Criqui MH et al. *N Engl J Med*. 1992;326:381-386.

Increased Incidence of Periprocedural Complications in PAD

Prognostic importance of PAD in patients undergoing coronary revascularization

Burek. JACC 1999;34:716-21.

Effect of PVD on Mortality after AMI treated with PCI

Guerrero et al. Am J Cardiol 2005;96:649-654.

What factors may contribute to increase risk in PAD beyond CAD?

- Impaired endothelial function
- Heightened inflammation
- Propensity toward thrombosis
- Impaired functional capacity with reduced physical activity

What should we be thinking about in her treatment?

Treatment of PAD *Prevent Ischemic Events*

Risk factor modification Antiplatelet therapies

- Smoking cessation
 - Goal: complete cessation
- Lipid management
 - Target LDL < 100 mg/dL
- Blood pressure control
 - Goal <130/85 mm Hg
- Blood sugar control
 - Goal: HbA_{1c} <7%

- Aspirin or Clopidogrel
 - Goal: reduction in risk of MI, stroke, and vascular death
 - Only clopidogrel is FDA approved
 - Many professional societies include ASA among first line agents in guidelines

Effect of Smoking Cessation on Survival in PAD

131 PatientsFollowed AfterBypass Graft orLumbarSympathectomySurgery

Faulkner et al. Med J Aust 1983;1:217.

Impact of Smoking Cessation on PAD

Jonason & Bergström. Acta Med Scand 1987;221:253-60

Cholesterol Reduction and the Development of Intermittent Claudication

Scandinavian Simvastatin Survival Study Pedersen et al. *Am J Card* 1998;81:333-5.

Heart Protection Study: Vascular Event by Prior Disease

	Incidence of Events					
	Statin	Control	Risk versus Control			
Existing Disease	(n=10,269)	(n=10,267)	Statin Favored	Placebo 🕨		
Previous MI	23.5	29.4	←			
Other CHD	18.9	24.2	↔			
No prior CHD or CVD	18.7	23.6	- >			
Peripheral arterial disease	24.7	30.5	<i>→</i> -	24% Reduction (<i>p</i> <0.0001)		
Diabetes	13.8	18.6	- \- -			
All patients	19.8	25.2	\diamond			
MI - myocardial infarction; CHD - cor CVD - cerebrovascular disease; PAD disease: CI - confidence interval; SE	0.4 0.6 0.8 1.0	1.2 1.4				

Heart Protection Study Collaborative Group. Lancet. 2002;360:7-22.

ACE Inhibition and Cardiovascular Events in High-Risk Patients

The Heart Outcome Prevention Evaluation Study. *NEJM* 2000;342:145-53.

Effect of ACE Inhibition on Cardiovascular Events in PAD

The Heart Outcome Prevention Evaluation Study. *NEJM* 2000;342:145-53.

ACC/AHA 2005 Guidelines Risk Factor Management in PAD

Lipid-lowering drugs

Antihypertensive drugs

- All patients with PAD: Statin treatment to achieve LDL level <100 mg/dL
- Patients with very high risk of ischemic events: Consider LDL of <70 mg/dL</p>
- Target blood pressure <140/90 mm Hg to reduce cardiovascular risk
 - If comorbid diabetes or chronic renal disease, target blood pressure <130/80 mm Hg</p>

Recommendations for Smoking Cessation

I Ilalibili D NEW

Patients who are smokers or former smokers should be asked about status of tobacco use at every visit.

Patients should be assisted with counseling and developing a plan for quitting that may include pharmacotherapy and/or referral to a smoking cessation program.

MODIFIED

Lialibili Individuals with lower extremity PAD who smoke cigarettes or use other forms of tobacco should be advised by each of their clinicians to stop smoking and offered behavioral and pharmacological treatment.

Ilalibili In the absence of contraindication or other compelling clinical indication, 1 or more of the following pharmacological therapies should be offered: varenicline, bupropion, and nicotine replacement therapy.

Effect of Antiplatelet Therapy on Cardiovascular Events in PAD

- 42 clinical trials
- 9,214 patients with PAD
- 23% reduction in serious adverse vascular events (P=0.004)
- Benefits similar among PAD subtypes (intermittent claudication, peripheral grafting, and peripheral angioplasty)

Effect of Aspirin vs Other Antiplatelet Agents in Reducing Vascular Events in Patients with PAD*

Treatment with other antiplatelet therapy resulted in a 24% reduction in vascular events compared with aspirin alone

*Meta-analysis. Other antiplatelet agents included ticlopidine, clopidogrel, or dipyridamole/aspirin combination.

Derived from Robless P et al. Br J Surg. 2001;88:787-800.

Clopidogrel vs. Aspirin in Prevention of Ischemic Events

Risk Reduction of Clopidogrel vs. Aspirin

CAPRIE Steering Committee. Lancet. 1996;348:1329-1339.

Effect of Dual Antiplatelet Therapy with High Risk Atherosclerotic Disease

Bhatt, D. et al. N Engl J Med 2006;354:1706-1717

Safety and Efficacy of Dual Antiplatelet Therapy with High Risk Atherosclerotic Disease

Table 4. Composite and Individual Primary and Secondary End Points.								
End Point	Clopidogrel plus Aspirin (N=7802)	Placebo plus Aspirin (N=7801)	Relative Risk (95% CI)*	P Value				
	no. (%)							
Efficacy end points								
Primary efficacy end point	534 (6.8)	573 (7.3)	0.93 (0.83–1.05)	0.22				
Death from any cause	371 (4.8)	374 (4.8)	0.99 (0.86–1.14)	0.90				
Death from cardiovascular causes	238 (3.1)	229 (2.9)	1.04 (0.87–1.25)	0.68				
Myocardial infarction (nonfatal)	146 (1.9)	155 (2.0)	0.94 (0.75–1.18)	0.59				
Ischemic stroke (nonfatal)	132 (1.7)	163 (2.1)	0.81 (0.64-1.02)	0.07				
Stroke (nonfatal)	150 (1.9)	189 (2.4)	0.79 (0.64–0.98)	0.03				
Secondary efficacy end point†	1301 (16.7)	1395 (17.9)	0.92 (0.86–0.995)	0.04				
Hospitalization for unstable angina, transient ischemic attack, or revascularization	866 (11.1)	957 (12.3)	0.90 (0.82–0.98)	0.02				
Safety end points								
Severe bleeding	130 (1.7)	104 (1.3)	1.25 (0.97–1.61)	0.09				
Fatal bleeding	26 (0.3)	17 (0.2)	1.53 (0.83–2.82)	0.17				
Primary intracranial hemorrhage	26 (0.3)	27 (0.3)	0.96 (0.56–1.65)	0.89				
Moderate bleeding	164 (2.1)	101 (1.3)	1.62 (1.27–2.08)	<0.001				

* CI denotes confidence interval.

† The secondary efficacy end point was the first occurrence of myocardial infarction, stroke, death from cardiovascular causes, or hospitalization for unstable angina, a transient ischemic attack, or a revascularization procedure (coronary, cerebral, or peripheral).

Effect of Dual Antiplatelet Therapy with Established Atherosclerotic Disease

Bhatt, D. L. et al. J Am Coll Cardiol 2007;49:1982-1988

Effect of Dual Antiplatelet Therapy with Established Atherosclerotic Disease

Bhatt, D. L. et al. J Am Coll Cardiol 2007;49:1982-1988

Effect of Aspirin on the Prevention of Cardiovascular Events in PAD

No. of Condisuspender Evented

	Total No. o	of Patients						
Source	Aspirin	Control	Weight, %	RR (95% CI) ^a	1	avors Aspirin	Favors Control	P Value
Belch et al, ⁹ 2008	105/638	108/638	41.3	0.97 (0.76-1.24)			÷.	.82
Catalono et al,21 2007	7/185	19/181	3.5	0.36 (0.16-0.84)				.02
BMFT-II,14 1998	5/170	7/164	2.0	0.69 (0.22-2.13)				.52
Study group on pharmacological treatment after PTA, ²⁰ 1994	2/108	2/115	0.7	1.06 (0.15-7.43)			•	.95
McCollum et al,32 1991	53/286	61/263	23.1	0.80 (0.58-1.11)		-1	•	.18
Heiss et al, ²⁸ 1990	5/132	4/67	1.5	0.63 (0.18-2.29)				.49
Colwell et al, ²² 1989	36/110	40/121	18.3	0.99 (0.68-1.43)			•	.96
Donaldson et al,23 1985	4/33	0/32	0.3	8.74 (0.49-155.97)				► .14
Hess et al, ³⁰ 1985	5/160	3/80	1.3	0.83 (0.20-3.40)				.80
Goldman and McCollum, ²⁵ 1984	0/22	2/31	0.3	0.28 (0.01-5.53)	-			.40
Kohler et al, ³¹ 1984	2/50	2/50	0.7	1.00 (0.15-6.82)			•	>.99
Schoop and Levy, ^{33,34} 1984	14/200	7/100	3.2	1.00 (0.42-2.40)			•	>.99
Green et al,26 1982	3/32	0/17	0.3	3.82 (0.21-69.88)				 .37
Harjola et al,27 1981	0/200	3/100	0.3	0.07 (0.00-1.38)	-	•		.08
Ehresmann et al, ²⁴ 1977	0/215	0/213	0.0					
Hess and Keil-Kuri, ²⁹ 1975	5/92	6/84	1.9	0.76 (0.24-2.40)			•	.64
Hess and Keil-Kuri, ²⁹ 1975	4/42	2/40	0.9	1.90 (0.37-9.83)			•	.44
Zekert,35 1975	1/148	3/150	0.5	0.34 (0.04-3.21)	-	•		.34
Total	251/2823	269/2446		0.88 (0.76-1.04)			•	.13
					0.02	0.1	1.0 10	50
						RR (95% CI)	
Aspirin for Prevention Cardiovascular Events with Low ABI

Fowkes, F. G. R. et al. JAMA 2010;303:841-848

Recommendations for Antiplatelet and Antithrombotic Drugs

Antiplatelet therapy is indicated to reduce the risk of MI, stroke, and vascular death in symptomatic PAD

Aspirin, 75 to 325 mg, is recommended as safe and effective antiplatelet therapy.

Clopidogrel (75 mg per day) is recommended as a safe and effective alternative antiplatelet therapy to aspirin

Recommendations for Antiplatelet and Antithrombotic Drugs

Antiplatelet therapy can be useful to reduce the risk of MI, stroke, or vascular death in asymptomatic individuals with an ABI ≤ 0.90 .

The usefulness of antiplatelet therapy to reduce the risk of MI, stroke, or vascular death in asymptomatic individuals with borderline abnormal ABI, defined as 0.91 to 0.99, is not well established.

The combination of aspirin and clopidogrel may be considered to reduce the risk of cardiovascular events in symptomatic PAD, not at increased risk of bleeding and at high perceived cardiovascular risk

Risk Reduction with ACE-inhibitors, Statins, and Antiplatelet Therapy in PAD

*PAD subgroups only.

APTC Antiplatelet Trialists' Collaboration. *BMJ.* 1994;308:81-106. CAPRIE Steering Committee. *Lancet.* 1996;348:1329-1339. HOPE Study Investigators. *N Engl J Med.* 2000;342:145-153. Heart Protection Study Collaborative Group. *Lancet.* 2002;360:7-22

PAD Case #2

- A 58 year old male presents with exertional left calf discomfort at ¹/₂ block
- Symptoms occur reproducibly with exertion and relieved by rest
- He has a history of DM, HTN, tobacco use, and known PAD with prior left femoralpopliteal bypass surgery
- Medications include lisinopril, metoprolol, atorvastatin, aspirin 81mg, and metformin.
- Exam reveals palpable femoral pulses without bruits, diminished popliteal and distal pulse on left, and no positional color changes or skin breakdown

How do we establish a diagnosis of PAD or assess severity and localize disease?

Common Sites of Claudication

Obstruction in Aorta or iliac artery	<u>Ischemia in</u> Buttock, hip, thigh
Femoral artery or branches	Thigh, calf
Popliteal artery	Calf, ankle, foot

Effect of Claudication on Peak Oxygen Consumption

Peak VO₂

*Approximates peak oxygen uptake of patients with NYHA class III CHF.

Hiatt WR. *J Appl Physiol.* 1992;73:346-53. Hiatt WR. *Circulation.* 1990;81:602-9.

Does the Patient Have Intermittent Claudication?

	Claudication	Pseudoclaudication
Characteristic of discomfort	Cramping, tightness, aching, fatigue	Same, tingling, burning, numbness
Location of discomfort	Buttock, hip, thigh, calf, foot	Same
Exercise-induced	Yes	Variable
Distance	Consistent	Variable
Occurs with standing	No	Yes
Action for relief	Stand	Sit, change position
Time to relief	Less than 5 minutes	Up to 30 minutes

Diagnostic Testing

- Ankle-brachial index
- Segmental limb pressures
- Pulse volume recordings
- Doppler velocity waveform analysis
- Functional testing
 - Treadmill exercise testing
- Duplex scanning
- Advanced imaging techniques

Right ABI	
Higher Right Ankle Pressure	₌ <u>mm Hg</u>
Higher Arm Pressure	mm Hg

Left ABIHigher Left Ankle Pressure______Higher Arm Pressure______mm Hg

Segmental Limb Pressure and Pulse Volume Recordings

ACC/AHA 2005/2011 Guidelines Diagnosis of PAD

MODIFIED

Use resting ankle brachial index (ABI) to establish lower extremity PAD diagnosis in those with suspected PAD, defined as individuals with 1 or more of the following: exertional leg symptoms, nonhealing wounds, age \geq 65 years, or \geq 50 years with a history of smoking or diabetes.

- Use ABI to confirm and diagnosis and establish a baseline in all new patients with PAD, regardless of severity
- B

Use toe-brachial index to establish a diagnosis of PAD in those with non-compressible vessels

Segmental pressure measurements are useful to when anatomic localization of PAD is required to create a therapeutic plan

Establishing the Diagnosis of Intermittent Claudication

Post Exercise Ankle Pressures

	Rest	1	2	3	4	5	6	7	8	9	10
R Ankle (PT):	145	93				108					128
L Ankle (DP):	130	60				66					110
L Brachial:	147	163				148					146
R ABI	0.99	0.57				0.73					0.88
L ABI	0.88	0.37				0.45					0.75

Advanced Vascular Imaging

CT Angiography

- Maximum-intensity projection (MIPs)
 - Angiographic like representation
- Volume rendering
 - Preserves depth information
- Multi-planar reformat
- Curved planar reformat (CPR)
 - Perpendicular to median arterial centerline

MR Angiography

- Traditional: Time of flights
- Contrast-enhanced MRA
 - Improves speed of exam, anatomic coverage, and small- vessel resolution
- Time-resolved gadolinium enhanced sequences
 - Time-resolved imaging of contrast kinetics (TRICKS)
 - Provides angiographic like dynamic contrast passage
- Moving-table technique or multi-array, parallel-imaging
 - Optimize large field-of-view imaging

He is sent for ABI/PVR and arterial duplex revealing ABI 0.5 on left with femoral-popliteal involvement and an occluded bypass graft

What treatments should we offer to those with intermittent claudication?

Treatment of PAD *Therapies Based Upon Symptoms*

Intermittent Claudication Critical limb ischemia

- Exercise Therapy
- Drugs
 - Pentoxifylline
 - Cilostazol
- Revascularization
 - Severe disability

Goal to provide relief of symptoms

- Wound care
- Antibiotics
- Revascularization
 - Endovascular
 - Surgery

Goal to promote limb survival

Treatment of PAD Effect of Drug Therapy on Walking Distance

Meta-analysis of 4 randomized, placebo-controlled trials

Compound, dose	Ν	Placebo	Treatment Favore	ed 🕨
Pentoxifylline, 1200 mg/day Cilostazol, 200 mg/day	698	-0	∽ ∽	
Cilostazol, 200 mg/day Cilostazol, 100 mg/day	516			
Cilostazol, 200 mg/day	239		>	
Cilostazol, 200 mg/day	81			
	0.6 Rel	0.8 1 . ative Increase	. 0 1.2 1.4 in Maximum Walkin	1.6 1.8 g Distance

(ratio of change in exercise performance versus placebo)

Maximal Walking Distance Before and After Drug Withdrawal

Dawson et al. Am J Surg. 1999;178:141-6.

Most Common Adverse Event

Dawson et al. Am J Med. 2000.

Effect of Atorvastatin of Maximum Walking Time in PAD

Mohler E R et al. Circulation 2003;108:1481-1486

Learn and Live

Effect of Atorvastatin of Pain-Free Walking Time in PAD

Mohler E R et al. Circulation 2003;108:1481-1486

Learn and Live

Effects of ACE inhibition on Claudication

		Value Wean (95% Ci)			~ CI)-	
Outcome Measure	No. of Participants	Baseline	6 mo	Within-Group Changes	Between-Group	P Value ^c
	(CD)	Basenno	01110	Than aroup on argos	Billoronoo	Talato
DEW/T o	iean (SD)					
Placebo	106	142 (54)	156 (57)	14 (6 to 21)		
Bamipril	106	140 (61)	229 (85)	88 (76 to 101)	75 (60 to 89)	<.001
MWT e			(/			
Placebo	106	238 (71)	259 (80)	23 (13 to 36)	055 (045 - 005	
Ramipril	106	234 (91)	512 (235)	277 (238 to 316)	255 (215 to 295)	<.001
Secondary outcome measures	, limiting-leg AB	l, mean (SD)				
At rest	,	, , ,				
Placebo	106	0.55 (0.14)	0.54 (0.16)	0.00 (-0.02 to 0.02)	0.10/0.08 to 0.19)	< 001
Ramipril	106	0.57 (0.14)	0.64 (0.13)	0.08 (0.06 to 0.09)	0.10 (0.06 to 0.13)	<.001
Following exercise						
Placebo	106	0.43 (0.12)	0.42 (0.16)	0.00 (-0.03 to 0.18)	0.44/0.00 - 0.440	- 004
Ramipril	106	0.45 (0.14)	0.52 (0.14)	0.07 (0.05 to 0.09)	0.11 (0.08 to 0.14)	<.001
WIQ scores, median (IQR) ^d						
Distance score						
Placebo	106	6.1 (2.7 to 11.2)	4.7 (2.3 to 7.4)	-1.1 (-4.2 to 0.0)	10 p (10 0 to 15 5)	< 0018
Ramipril	106	6.3 (3.9 to 19.7)	16.9 (13.4 to 31.8)	9.9 (8.3 to 12.1)	13.6 (12.2 10 13.3)	<.001
Speed						
Placebo	106	10.9 (6.5 to 17.4)	6.9 (3.3 to 10.9)	-3.3 (-4.0 to 0.0)	10.0 (11.0 to 15.0)	< 0018
Ramipril	106	7.6 (6.5 to 14.4)	20.1 (15.2 to 30.2)	10.9 (7.6 to 12.0)	13.3 (11.9 to 15.2)	<.001-
Stair climbing						
Placebo	106	16.8 (15.3 to 38.7)	16.7 (12.6 to 21.0)	-4.2 (-8.4 to 0.0)	05.0 (05.4 += 00.4)	< 0018
Ramipril	106	16.8 (15.7 to 37.8)	41.9 (31.0 to 67.1)	20.9 (16.8 to 25.2)	20.2 (20.1 to 29.4)	<.001*

Additional Effects of ACE Inhibition in PAD

SF-36 scores, median (IQR)						
Physical Component Summary Placebo	106	31.4 (30.9 to 32.7)	32.5 (31.8 to 33.0)	0.2 (-0.4 to 1.8)		000
Ramipril	106	32.3 (30.4 to 33.1)	41.4 (32.8 to 48.6)	6.3 (0.0 to 19.0)	8.2 (3.6 to 11.4)	.02*
Mental Component Summary						
Placebo	106	47.8 (34.7 to 64.3)	48.5 (33.2 to 66.8)	0.1 (-0.5 to 0.3)	05/07+-11	748
Ramipril	106	44.1 (33.7 to 62.2)	49.2 (35.1 to 62.5)	1.8 (0.0 to 3.9)	0.5 (-0.7 to 1.1)	.74
Volume flow, limiting-leg ABI, n	nL/min					
Placebo	50	602 (95)	633 (96)	31 (17 to 45)	0 / 07 / 00	
Ramipril	61	503 (140)	536 (148)	33 (14 to 53)	-2 (-27 to 22)	.85
Patent site						
Placebo	50	599 (118)	577 (109)	-22 (-29 to -16)	CO (EE to 71)	< 001
Ramipril	61	497 (67)	538 (72)	41 (36 to 46)	63 (33 to 7 1)	<.001
Common femoral artery diamet Site of stenosis	ter, limiting leg,	cm				
Placebo	50	8.75 (0.52)	8.46 (0.53)	-0.12 (-0.15 to 0.31)	0.00/0.40 - 0.40	
Ramipril	61	6.81 (1.22)	6.43 (1.35)	0.33 (-0.02 to 0.54)	0.22 (0.12 to 0.46)	.44
Patent site						
Placebo	50	9.88 (0.60)	9.67 (0.60)	-0.13 (-0.18 to 0.42)	0.12/0.01 to 0.24	20
Ramipril	61	8.70 (0.62)	8.86 (0.59)	0.16 (0.08 to 0.38)	0.12 (0.01 to 0.24)	.23

Exercise for PAD?

Your legs hurt when you walk so go out and walk?

Effect of Exercise Training on Walking Ability in PAD

Gardner AW. JAMA. 1995;274:975-980.

Treatment of PAD Effect of Exercise Training

Gardner AW. JAMA. 1995;274:975-980.

Treatment of PAD Effect of Exercise Components on Walking Distance

Exercise Duration Exercise Frequency Length of Program **Training End** Point Mode of **Exercise**

* P < 0.05

< 30 min/session 144 ± 419 653 ± 364 * \geq 30 min/session < 3 session/wk 249 ± 350 \geq 3 sessions/wk 541 ± 263 * 275 ± 228 < 26 weeks 519 ± 409 * \geq 26 weeks 196 ± 78 Onset of Pain Near-Maximal Pain 607 ± 427 * 512 ± 483 * Walking Combination 287 ± 127

ACC/AHA 2005 Guidelines **Treatment of Claudication**

Exercise

Drug therapy

- Supervised exercise training should be the initial treatment
 - 30-45 minute sessions
 - 3 or more times per week
 - At least 12 weeks
- Value of unsupervised exercise programs is not well established
- Cilostazol 100 mg twice daily
 - Can improve symptoms & increase walking distance
 - Indicated for lifestyle-limiting claudication
 - Contraindicated in patients with heart failure
- Pentoxifylline 400 mg three daily
 - Consider as an alternative to cilostazol

Effectiveness of pentoxifylline is marginal and not well established

Revascularization for Aorto-Iliac Arterial Disease

Aortofemoral Bypass

- Primary patency at 5 years of 81-85%¹
- Perioperative mortality 5-8%¹
- Reserved for severe diffuse disease cases²
- Indicated for Rutherford class $\ge 3^2$

Percutaneous Intervention

- Patency at 5 years of 65-80%¹
- Perioperative mortality 0.1%¹
- Treatment of choice³
- Indicated for Rutherford class $\ge 2^2$

- 1. Raptis S. et al. Eur. J. Vasc. Endovasc. Sur. 1995; 9: 97-102
- 2. Rosenfield K and Isner JM. Chap 97 in Textbook of Cardiovascular Medicine 1998
- 1. Becker GJ et al. Radiology 1989;170:921-940
- 2. Belli A-M et al. Clin Radiol 1990;41:380-3
- 3. Rosenfield K and Isner JM. Chap97 in Textbook of Cardiovascular Medicine 1998

Lesion-guided approach for treatment of aorto-iliac disease

TASC II 2007: Europ J Vasc Endovasc Surg 2007:33(S1):S52

Treatment of PAD Revascularization for Femoro-Popliteal Disease

Femoro-Popliteal Bypass Surgery

- Primary patency at 5 years of 60-80%
- Autologous veins preferred to synthetic grafts
- Perioperative mortality 0-3%
- Indicated for Rutherford class ≥ 3

Femoro-Popliteal Angioplasty

- Patency at 2-5 years ranges between 40-70%
- Technical problems due several anatomic issues:
 - Occlusions vs stenosis
 - Diffuse disease
 - Adductor canal
 - Disease in run off vessels
- Perioperative mortality is very low
- Indicated for Rutherford class ≥ 2

Lesion-guided approach for treatment of femoro-popliteal disease

TASC II 2007: Europ J Vasc Endovasc Surg 2007:33(S1):S58

ACC/AHA 2005 Guidelines Treatment of Claudication

Endovascular therapies Only indicated for patients with

- Vocational or lifestyle-limiting disability;
- Reasonable likelihood of symptomatic improvement;
- Prior failure of exercise or pharmacological therapy; and,
- Favorable risk-benefit ratio

B

IA

- Not indicated as a prophylactic treatment
- Preferred method for revascularization of TASC type A iliac and femoropopliteal arterial lesions

Surgery

- Indicated for patients
 - With significant functional disability from symptoms
 - Who are unresponsive to exercise or pharmacotherapy
 - Who have a reasonable likelihood of symptomatic improvement

Surgical intervention is not indicated to prevent progression to limb-threatening ischemia

Exercise vs Stenting for Claudication

Pair-wise comparisons						
	Difference (minutes)	<i>P</i> value				
Exercise vs. OMC	4.6 (95% CI, 2.7-6.5)	<0.001				
Stent vs OMC	2.5 (95% CI, 0.6-4.4)	0.02				
Exercise vs Stenting	2.1 (95% CI, 0.0-4.2)	0.04				

CLEVER: Circulation. 2012;125:130-139
Exercise vs Stenting for Claudication

Pair-wise comparisons

	Difference (minutes)	<i>P</i> value
Exercise vs. OMC	2.2	<0.003
Stent vs OMC	2.9	0.006
Exercise vs Stenting	0.7	0.43

CLEVER: Circulation. 2012;125:130-139

Exercise vs Stenting for Claudication

Pair-wise comparisons

	Difference (steps)	<i>P</i> value
Exercise vs. OMC	78	0.06
Stent vs OMC	120	0.10
Exercise vs Stenting	42	0.47

CLEVER: Circulation. 2012;125:130-139

Exercise vs Stenting for Claudication

Change in WIQ

CLEVER: Circulation. 2012;125:130-139

He is placed on cilostazol 100 mg twice daily and advised to perform interval exercise training but claudication remains at 1 block.

So what if initial treatment is inadequate?

Overview of New Technologies

Rogers, J. H. et al. Circulation 2007;116:2072-

Angioplasty vs. Stent in the Superficial Femoral Artery

Schillinger, M. et al. N Engl J Med 2006;354:1879-1888

Primary Patency Femoral Angioplasty vs Stenting

Avmerican Heant Association

Laird et al. Circ Cardiovasc Interv 2010;3:267-276

Clinical Effects of Primary Stenting vs Angioplasty for Femoral Dz

Schillinger et al. N Engl J Med 2006;354:1879-1888.

Paclitaxel Coated Balloon for Femoropopliteal Dz

Tepe et al. NEJM 2008;358:689-99.

DES vs Angioplasty for Femoropopliteal Dz *Zilver (Paclitaxel) Stent*

Dake M D et al. Circ Cardiovasc Interv 2011;4:495-504

DES vs Angioplasty for Femoropopliteal Dz *Zilver (Paclitaxel) Stent*

Dake M D et al. Circ Cardiovasc Interv 2011;4:495-504

He has resolution of his left leg claudication. ABI improved from 0.5 to 0.75. He is now >3 year post intervention and without claudication or cardiac events.

PAD Case #3

- A 66 year old male presents with intense rest discomfort of his left foot
- He was previously seen with claudication of both legs and placed on Pletal
- He has a history of HIV with peripheral neuropathy, dyslipidemia and tobacco use.
- Medications include pravastatin, Lopinivir/Rotinivir, Abacavir, Lamivudine, Notriptyline, Gabapentin
- Exam reveals non-palpable pulses in left leg with pallor upon elevation and dependent rubor
- Labs with ABI 0.5 on left and 0.9 on right

Lower Extremity Segmental Pressures

		Right	Index	Left	Index
•	Brachial	122 mmHg		123 mmHg	
•	Thigh	127 mmHg	1.03	66 mmHg	0.54
•	Calf	115 mmHg	0.93	64 mmHg	0.52
•	Ankle/PT	108 mmHg	0.88	63 mmHg	0.51
•	Ankle/DP	114 mmHg	0.93	57 mmHg	0.46

Lower Extremity Pulse Volume Recording

		Right	Amplitude	Left	Amplitude
•	Thigh	Normal	16	Moderate	11
•	Calf	Mild	17	Moderate	11
•	Ankle	Normal	18	Moderate	9
•	Metatarsal	Normal	15	Severe	

What should be done in his management?

Hirsh et al. *JACC*. 2006;47:1239-1312.

Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial

- Compared angioplasty first with surgery first for critical limb ischemia - 195/228 (86%) bypass surgery and 216/224 (96%) balloon angioplasty
- Compared with angioplasty, surgery was associated with
 - lower immediate failure (3% versus 20%)
 - higher 30-day morbidity (57% versus 41%)
 - lower 12-month reintervention (18% versus 26%)

Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial

Amputation Free Survival

Bradbury AJ, et al. J Vasc Surg 2010;51:5S-17S

Cox proportional hazards analysis for surgery first by time from randomization < 2 years and > 2 years

End point	Time	Estimate	95% CI	<i>P</i> -value	
Amputation-free survival					
Unadjusted	Before 2 years	5 1.05	(0.78 to 1.41)	0.76	
	After 2 years	0.80	(0.55 to 1.16)	0.24	
Adjusted	Before 2 years	5 1.03	(0.76 to 1.39)	0.85	
	After 2 years	0.85	(0.50 to 1.07)	0.11	
Overall survival					
Unadjusted	Before 2 years	5 1.17	(0.83 to 1.65)	0.36	
	After 2 years	0.62	(0.43 to 0.90)	0.01	
Adjusted	Before 2 years	5 1.19	(0.84 to 1.68)	0.32	
	After 2 years	0.61	(0.50 to 0.75)	0.009	

* Adjusted for stratification, creatinine, body mass index, diabetes, age, smoking, statin at baseline and below-knee Bollinger angiogram score.

Recommendations for CLI: Endovascular and Open Surgical Treatment for Limb Salvage

For patients with limb-threatening lower extremity ischemia and an estimated life expectancy of <2 years or in patients in whom an autogenous vein conduit is not available, balloon angioplasty is reasonable to perform when possible as the initial procedure to improve distal blood flow.

For patients with limb-threatening ischemia and an estimated life expectancy of >2 years, bypass surgery, when possible and when an autogenous vein conduit is available, is reasonable to perform as the initial treatment to improve distal blood flow.

General Principle for Revascularization

- Claudicants should be revascularized only after a trial of exercise and pharmacotherapy.
 - An exception may be isolated iliac artery stenosis.
- Inflow and outflow should always be assessed prior to revascularization. Inflow lesions should be revascularized first followed by outflow lesions if bothersome symptoms persist.
- Revascularization for critical limb ischemia with associated tissue loss should aim to provide straight line flow to the foot.

- The patient underwent angiography revealing a 70% R iliac artery stenosis and a long occlusion of the L iliac arteries
- Attempt to cross L iliac lesion was
 unsuccessful
- He underwent R iliac artery stent placement followed by a R to L femoral to femoral artery bypass graft
- Resolution of his rest ischemia to his left foot

Use of Coronary Revascularization Prior to Vascular Surgery

McFalls EO, et al. NEJM 2004:351:2795.

Use of Beta-Blockade during Vascular Surgery

Poldermans D et al. NEJM 2004;341:1789.

Use of Statin Therapy during Vascular Surgery

Durazzo AES et al. J Vasc Surg 2004;39:967.

Summary of PAD and Its Management

- PAD is common and has a significant impact upon cardiovascular outcomes
- Treatment of PAD, even asymptomatic, should focus on risk factor modification/risk reduction
- Treatment of intermittent claudication should include exercise therapy, drug therapy and selective use of revascularization
- Treatment for critical limb ischemia warrants aggressive efforts at revascularization, including surgery, to reduce the risk of amputation